JSTL
As J2EE programmers, we are familiar with Servlets , JSP and JavaBeans. Any JSP page should encapsulate the business logic in a bean and invoke it by using <jsp:useBean> tag. Till recently, a combination of Servlets, JSP and beans was the standard practice. But, the JCP realeased an API for enabling programmers to create custom tags and use them in their JSP pages. The difference between javabean and java custom tags was that, though both made use of java classes, tags can be used by non-programmers also without knowledge of Java programming, just as they would use html tags.

The release of the TagLibrary API, triggered a lot of activity and hundreds of tags were introduced by the java community, some of them 'open' and a few 'proprietary'. This led to a lot of confusion in code maintenance, because knowledge of Java was no longer sufficient to understand and interpret a given jsp page using non-standard tags .The JCP had unwittingly introduced elements of confusion by the JSP-Custom-Tag specification.

To correct this problem, Sun and JCP, initiated the JSP-Standard Tag Library (JSTL) project.

JSTL is a quite recent development. It was only in 2003, that the official version 1.1 was released and now incorporated into JSP-2.

According to the latest position, the JCP is suggesting that a JSP page should be completely free from any trace of Java code! So, programmers who were writing their JSP using Javabeans and scriptlets , may not be able to carry on in their old style as, to prevent programmers from introducing scripting sections in their pages, there is a provision for turning off scriptlets altogether from a jsp page. If that happens, all our knowledge of Java coding will be of little use in creating a jsp page, though such knowledge may be useful in creating beans and other types of java programs.

It is thus very important for J2EE students, to understand the trend and get to know the techniques, advantages and limitations of tag libraries. In a way, a study of JSTL is almost synonymous with a study of the latest version of JSP (ie) JSP2.0 .

Without an introductory demo for each of these types, it may be difficult to appreciate the significance of the above lines. So we will now give simplest illustration.

Servlets are full-fledged java-classes and so are very powerful. But, when we want to create a dynamically-generated web-page using servlets, it becomes difficult and clumsy. Let us consider a very simple example.

The user fills up text in html form with his name and submits the form, to the servlet. The servlet reads the data , appends a greeting and sends it back to the user.

We begin with a simple html form;

// greeting.htm

=============

 <html> <body>

<form method=post action= 'http://localhost:8080/servlet/greeting'>

<input type=text name='text1'>

<input type=submit>

</form>

 </body> </html>

 (relevant section of greeting.java servlet)

// greeting.java (code-snippet only)

 public void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException,IOException
{

 resp.setContentType("text/html");

 PrintWriter out = resp.getWriter();

 //-------------------------------

 String s = req.getParameter("text1");

 out.println("<html><body bgcolor=yellow>");

 out.println("we welcome"+",
");

 out.println (s);

 out.println("</body> </html>");

}

It will be noticed that we have to write so many 'out.println' statements. This makes the page unreadable. (If String-buffer is used , we can do it with just a single out.println , but forming the correct string may pose difficulties).

It is to solve this problem that JSP was developed in 1999. While a servlet interposes HTML in java code, JSP interposes java-code in HTML

JSP based Servlet program

// greeting1.jsp

 <html> <body bgcolor=yellow>

 <%

 String s = request.getParameter("text1");

 out.println("we welcome"+
);

 out.println(s);

 %>

 </body>

 </html>

 Some coders prefer to use expressions.

What is an 'expression'? It is a method of substituting request-time values in html page. (see greeting2.jsp). Carefully note that there is no semi-colon after ("text1").

// greeting2.jsp

 <html> <body bgcolor=yellow>

 we welcome

 <%= request.getParameter("text1") %>

 </body> </html>

The third variant is to use a javabean to encapsulate the business-logic. We develop a jsp-bean as follows:

--

// greeter.java

//==============

package ourbeans;

public class greeter
{

 public greeter() { }

 public String greetme(String s)
 {

 return "we welcome..."+s;

 }

}

Below is JSP based on javabean

// greeting3.jsp

<html> <body>

<jsp:useBean id='bean1' class='ourbeans.greeter'>

 <%

 String s = request.getParameter ("text1");

 String r = bean1.greeteme(s);

 out.println(r);

 %>

</body> </html>

--

We are now entering JSTL zone.

--

Before going depth, for the moment, we are just getting familiar with the required syntax. We begin with taglib directive.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

The directive says that we are using 'core' tags and the prefix will be 'c'. If we want to assign the value to a variable and then print it, the JSTL code will be

 <c:set var="name" value="Hari Krishna, Naresh i Technologies" />

 <c:out value="${name}" />

The Dollar sign & brace will be familiar ground for Perl programmers. In JSTL & JSP-2, it is known as EL (Expression Language).

==

To consider another example, In servlet & jsp, we write:

 String name = request.getParameter("ename");

to collect the input from the user.

The same job is done in JSTL by:

<c:set var="name" value="${param.ename}" >

==================================

With these brief hints, it should not be difficult to understand the following JSP page written by using JSTL core-tags.

// greeting4.jsp (uses JSTL)

===========

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html> <body>

<c:set var=”name” value="${param.ename}" />

We welcome

<c:out value="${name}" />

</body> </html>

In the previous examples, there was java code in a few lines atleast. But, in the JSTL example, we find that there are only tags and no java scriptlets.

This is the open objective of the JSTL initiative, under the auspices of Java Community Project!

This enables, clean separation of Page author's role and Logic programmers' role. Thus maintenance becomes easy.

Types of JSTL tags

There are five groups under which the JSTL tags have been organized.

 They are as follows:

 1) core

- Tags for general purpose processing
 2) xml

- Tags for parsing, selecting, and transforming XML data

 3) sql

- Tags for accessing relational databases
 4) formatting
- Tags for formatting data for international use
 5) functions
- Tags for manipulating Strings and collections
==

Core Library tags

Defines several standard actions to perform programming general stuff like implementing loops, conditional statements. It also contains tags to perform JSP fundamental task like setting attribute, writting output, redirecting out to other pages etc..

XML library tags

It has tags for writing and formatting xml data.

SQL Library tags:

Contains tags to perform data base operations

Formating library tags:

It has tags for formatting dates and numbers for internationalization

Function library tags:

Contains tags to manipulate Collections and String objects

URI and prefix of each type of tags
	Tags
	URI
	prefix

	Core
	http://java.sun.com/jstl/core
	c

	Xml
	http://java.sun.com/jstl/xml
	xml

	Sql
	http://java.sun.com/jstl/sql
	sql

	Formatting
	http://java.sun.com/jstl/fmt
	fmt

	Functions
	http://java.sun.com/jstl/fn

	fn

Acquiring and installing the JSTL
There are two JAR files that provide JSTL capabilities to JSPs. The first, jstl.jar, provides the API classes for the library. The second, standard.jar, provides the library’s implementation classes. Tomcat holds both, but they’re hiding in the examples. To acquire them, copy the two libraries from

C:\jakarta-tomcat-6.0.25\webapps\ examples\jsp\WEB-INF\lib

and add them to the lib directory within your application’s WEB-INF folder.

Because you’ve added these files to the lib directory, you don’t need to update your deployment descriptor. The container will find them automatically. But you do need to reference the library in your JSP by using the taglib directive
<%@ taglib uri="http://java.sun.com/jstl/core " prefix="c" %>
Programs

We are now ready to experiment with all the tags in the ‘core’ library.
The following tags are available in the ‘core’ library.

1. General Purpose Tags

 1. <c:set >

 2. <c:out >

 3. <c:remove >

 4. <c:catch >

2. Conditional tags:

. 1. <c:if >

 2. <c:choose >

 3. <c:when >

 4. <c:otherwise >

3. Iteration tags:

 1. <c:forEach>

 2. <c:forTokens>
4. URL Related tags:

 1. <c:import>

 2. <c:url>

 3. <c:redirect>

 4. <c:param>

Now we are ready to test the below JSP page with JSTL code

1. Save the below file as FirstJSTL.jsp,

2. copy it into %CATALINA_HOME%\webapps\ROOT folder.

3. Open browser and access it with below URL

http://localhost:8080/FirstJSTL.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>

<body>

<c:set var="name" value="Hari" />

We welcome ${name}

</body>

</html>

Below is the Output you can see on browser

We Welcome Hari

<%--

SecondJSTL.jsp

In all the previous examples, we invoked the JSP file through a html file. But, in this jsp, we are posting the page to itself.

In the browser we get a form with two text boxes and a submit button. We fill up the textboxes with ‘name’ and ‘place’ and submit.

This jsp executes and displays the values entered by the user due to the JSTL tags

<c:out value=”${param.text1} /> etc.

That is about our first and introductory example.

--%>

<%@ page contentType="text/html" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>

<body bgcolor=lightblue>

<form method=post action="SecondJSTL.jsp">

NAME <input type=text name="text1">

PLACE<input type=text name="text2">

<input type=submit>

</form>

NAME:<c:out value="${param.text1}" />

PLACE:<c:out value="${param.text2}" />

<%--

NAME: ${param.text1}

PLACE:${param.text2}

--%>

</body>

</html>

<%--

ThirdJSTL.jsp

This example is very important.

When the user enters data in a number of fields, it is tedious to collect the data and transfer it to jsp page for processing.

In our example, we are collecting data about a player, such as his name, place and game.

JSP has an action tag, known as 'jsp:setProperty'. Using this along with a standard javabean, we can extract data and transfer it to our program in a single step.

The syntax is

<jsp:useBean id="bean1" class="ourbeans.player" >

<jsp:setProperty name="bean1" property="*" />

</jsp:useBean>

(the * sign denotes 'all').

 But, we should first create the 'player ' bean with all the attributes and getter & setter methods, as shown.

--%>

// player.java

package ourbeans;

public class player

{

 String name;

 String place;

 String game;

 public player()

 {

 name=" ";

 place=" ";

 game=" ";

 }

//---------------------------

 public void setName(String a){

 name=a;

 }

 public void setPlace(String b){

 place=b;

 }

 public void setGame(String c){

 game=c;

 }

//------------------------------

 public String getName(){

 return name;

 }

 public String getPlace(){

 return place;

 }

 public String getGame(){

 return game;

 }

}

<%-- ThirdJSTL.jsp --%>

<%@ page contentType="text/html" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>

<body>

<form method="POST" action="ThirdJSTL.jsp">

<jsp:useBean id="bean1" class="ourbeans.Player">

<jsp:setProperty name="bean1" property="*" />

</jsp:useBean>

Name <input type=text name="name">

Place<input type=text name="place">

Game<input type=text name="game">

<input type=submit>

</form>

Name: <c:out value="${bean1.name}" />

Place: <c:out value="${bean1.place}" />

Game: <c:out value="${bean1.game}" />

</body>

</html>

===

Once again, it will be noticed that there is no java code in this example, as everything is being done by tags, only..

We are now ready to take up examples for 'condition' tags.

There are two types of 'condition tags'. namely,

<c:if> & <c:choose>.

In this demo, we learn how to use the <c:if tag.

--

//FourthJSTL.jsp

<%@ page contentType="text/html" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>

<body bgcolor="lightblue">

<form method="POST" action="FourthJSTL.jsp">

<select name="combo1">

 <option value="Hari">Hari

 <option value="Krishna">Krishna

</select>

<input type=submit>

</form>

<c:set var="s" value="${param.combo1}" />

You Selected: ${s}

<%--

<c:out value="${s}" />

--%>

<c:if test = "${s eq 'Hari' }" >

 <c:out value="Good Morning...Hari!" />

</c:if>

<c:if test="${s = = 'Krishna'}" >

 <c:out value=" How Are You?....Krishna!" />

</c:if>

</body>

</html>

In this example which follows, we take up <c:choose> tag.

The syntax is:

<c:choose >

 <c:when test=" " >

 <c:otherwise> something </c:otherwise>

</c:choose>

It is used for both if-else and switch

The peculiarity to be noted here is that unlike <c:if , where we had to explicitly use <c:out for printing , no such <c:out has been used here., and yet the result is displayed,

because 'choose' includes 'displaying'..

When we choose '7', "select between 1 & 5 " will be displayed!

// FifthJSTL.jsp

<%@ page contentType="text/html" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>

<body bgcolor="lightblue">

 <form method="POST" action="FifthJSTL.jsp">

 <select name="combo1">

 <option value="1">1 </option>

 <option value="2">2 </option>

 <option value="3">3 </option>

 <option value="4">4 </option>

 <option value="5">5 </option>

 <option value="7">7 </option>

 </select>

 <input type=submit>

 <c:set var="s" value="${param.combo1}" />

 Today is

<c:choose>

 <c:when test="${s==1}">Sunday </c:when>

 <c:when test="${s==2}">Monday</c:when>

 <c:when test="${s==3}">Tuesday</c:when>

 <c:when test="${s==4}">Wednesday</c:when>

 <c:when test="${s==5}">Thursday</c:when>

 <c:otherwise>

 select between 1 & 5

 </c:otherwise>

</c:choose>

</body>

</html>

This Application deals with Iteration tag.

We are familiar with the 'for-each' construct.

JSTL's 'for-each' also has the same functionality.

In the following example, we have a String array. named as 'colors'.

By using the <c:forEach> tag, we iterate through the array and display the values.

//Sixth.jsp

<%@ page contentType="text/html" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<c:forEach var="n" begin="3" end="8" >

 <c:out value="${n}" />

</c:forEach>

<%-- Seventh.jsp --%>

<%@ page contentType="text/html" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<% pageContext.setAttribute("colors", new String[]{"red","green","blue","orange","black"}); %>

<table>

<c:forEach var="n" items="${colors}" varStatus="a">

<tr>

<td> <c:out value="${a.index}" /> </td>

<td> <c:out value="${a.count}" /> </td>

<td> <c:out value="${a.first}" /> </td>

<td> <c:out value="${a.last}" /> </td>

<td> <c:out value="${a.current}" /> </td>

<tr>

</c:forEach>

</table>

<c:forEach> action tag contain the following attribute list:

items : the collection of items like String[]

var : a symbolic name for the collection

begin : the starting index of iteration

end : the ending index of iteration

step : incremental step

varStatus: symbolic name for current status.

If we assign the symbolic name 'a' for the status, we are able to access its properties such as index, count, whether it is first item, whether it is last item and the current value.

===

Below example deals with JSTL's 'forTokens' tag.<c:forTokens>, which iterates over a string of tokens separated by a set of delimiters like the stringTokenizer class in Java.

--

<%-- Eight.jsp --%>

<%@ page isELIgnored = "true" contentType="text/html" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

 <c:set var="s" value="Hari,Hyderabad,MCA,Java Faculty,Dec' 2004" />

<html>

<body>

 <table border="1">

 <tr>

 <th>Name</th>

 <th>Place</th>

 <th>Degree</th>

 <th>working As</th>

 <th>Since</th>

 </tr>

 <tr>

<c:forTokens items="${s}" delims="," var="token" >

 <td><c:out value="${token}" /></td>

</c:forTokens>

 </tr>

 </table>

 </body>

 </html>

==

Now Let us move to next set of tags XML library tags

- No one can have any second opinion about the elegance of xml tags in JSTL.

- While you were learning, you would have come across JAXP, DOM, SAX, JDOM and such terms, and it may have been none too easy to learn.

- But the xml tags in JSTL , make XML processing and even Transformation , a cynch! (very easy) And, we now proceed to study them.

- Making our study even easier, many of the xml tags in JSTL, are very much similar to the 'core' tags. For example, just like

<c:out>, we have <x:out>.

Similarly,

<x:forEach>, <x:if>,<x:when> etc.

So, if we have understood the syntax of the 'core'; tags, it will not be difficult to use the 'xml' tags.

All the following examples use the books.xml file. It contains 'elements' like 'title' and 'author'..

books.xml

=======

<?xml version="1.0" ?>

<books>

 <book>

 <title>SCJP Conclusions Hand Book</title>

 <author>Hari Krishna</author>

 </book>

 <book>

 <title>SCWCD Conclusions Hand Book</title>

 <author>Hari Krishna</author>

 </book>

 <book>

 <title>Core Java</title>

 <author>Ivor Hortson</author>

 </book>

 <book>

 <title>Head First Servlets and JSP</title>

 <author>Kathy Sierra</author>

 </book>

 <book>

 <title>Struts In Action</title>

 <author>Cedric</author>

 </book>

 <book>

 <title>Hibernate in Action</title>

 <author>Gavin King</author>

 </book>

</books>

<%@ page isELIgnored = "true" contentType="text/html" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<%@ taglib prefix="x" uri="http://java.sun.com/jstl/xml" %>

<html>

<body>

<c:import url="Books.xml" var="xmltext" />

 <x:parse xml="${xmltext}" var="doc" />

 <table border=1>

 <th>

 <tr>

 <td>title</td>

 <td>author</td>

 </tr>

 </th>

<x:out select="$output/books/book[1]/title"/>

The price of the second book:

<x:out select="$output/books/book[2]/price"/>

</body>

</html>

