

1. Write a Java program to create a class called "Cat" with instance variables name
and age. Implement a default constructor that initializes the name to "Unknown" and
the age to 0. Print the values of the variables.

2. Write a Java program to create a class called Dog with instance variables name and
color. Implement a parameterized constructor that takes name and color as
parameters and initializes the instance variables. Print the values of the variables.

3. Write a Java program to create a class called "Book" with instance variables title,
author, and price. Implement a default constructor and two parameterized
constructors:

 One constructor takes title and author as parameters.
 The other constructor takes title, author, and price as parameters.
 Print the values of the variables for each constructor.

4. Write a Java program to create a class called Student with instance variables
studentId, studentName, and grade. Implement a default constructor and a
parameterized constructor that takes all three instance variables. Use constructor
chaining to initialize the variables. Print the values of the variables.

5. Write a Java program to create a class called Rectangle with instance variables
length and width. Implement a parameterized constructor and a copy constructor
that initializes a new object using the values of an existing object. Print the values of
the variables.

6. Write a Java program to create a class called Account with instance variables
accountNumber and balance. Implement a parameterized constructor that initializes
these variables with validation:

 accountNumber should be non-null and non-empty.
 balance should be non-negative.
 Print an error message if the validation fails.

7. Write a Java program to create a class called Singleton that ensures only one
instance of the class can be created. Implement a private constructor and a public
static method to get the single instance of the class. Print a message indicating the
creation of the instance.

8. Write a Java program to create a class called Classroom with instance variables
className and students (an array of strings). Implement a parameterized constructor
that initializes these variables. Print the values of the variables.

9. Write a Java program to create a class called Point with instance variables x and y.
Implement overloaded constructors:

 One constructor takes int parameters.
 Another constructor takes double parameters.
 Print the values of the variables for each constructor.

1. Write a Java program to create a class called Person with private instance variables
name, age. and country. Provide public getter and setter methods to access and
modify these variables.

2. Write a Java program to create a class called BankAccount with private instance
variables accountNumber and balance. Provide public getter and setter methods to
access and modify these variables.

3. Write a Java program to create a class called Rectangle with private instance
variables length and width. Provide public getter and setter methods to access and
modify these variables.

4. Write a Java program to create a class called Employee with private instance
variables employee_id, employee_name, and employee_salary. Provide public getter
and setter methods to access and modify the id and name variables, but provide a
getter method for the salary variable that returns a formatted string.

5. Write a Java program to create a class called Circle with a private instance variable
radius. Provide public getter and setter methods to access and modify the radius
variable. However, provide two methods called calculateArea() and
calculatePerimeter() that return the calculated area and perimeter based on the
current radius value.

6. Write a Java program to create a class called Car with private instance variables
company_name, model_name, year, and mileage. Provide public getter and setter
methods to access and modify the company_name, model_name, and year variables.
However, only provide a getter method for the mileage variable.

7. Write a Java program to create a class called Student with private instance
variables student_id, student_name, and grades. Provide public getter and setter
methods to access and modify the student_id and student_name variables. However,
provide a method called addGrade() that allows adding a grade to the grades variable
while performing additional validation.

8. Write a Java program to create a class called “Book” with private instance variables
title, author, and price. Provide public getter and setter methods to access and
modify these variables. Add a method called applyDiscount() that takes a percentage
as a parameter and reduces the price by that percentage.

9. Write a Java program to create a class called Smartphone with private instance
variables brand, model, and storageCapacity. Provide public getter and setter
methods to access and modify these variables. Add a method called increaseStorage()
that takes an integer value and increases the storageCapacity by that value.

10. Write a Java program to create a class called Desktop with private instance
variables brand, processor, and ramSize. Provide public getter and setter methods to
access and modify these variables. Add a method called upgradeRam() that takes an
integer value and increases the ramSize by that value.

11. Write a Java program to create a class called House with private instance
variables address, numberOfRooms, and area. Provide public getter and setter
methods to access and modify these variables. Add a method called calculatePrice()
that returns the price of the house based on its area and a price per square meter.

12. Write a Java program to create a class called Account with private instance
variables accountNumber, accountHolder, and balance. Provide public getter and
setter methods to access and modify these variables. Add a method called deposit()
that takes an amount and increases the balance by that amount, and a method called
withdraw() that takes an amount and decreases the balance by that amount.

13. Write a Java program to create a class called Movie with private instance
variables title, director, and duration. Provide public getter and setter methods to
access and modify these variables. Add a method called getMovieDetails() that
returns a formatted string containing the movie details.

14. Write a Java program to create a class called Product with private instance
variables productName, productCode, and price. Provide public getter and setter
methods to access and modify these variables. Add a method called applyDiscount()
that takes a percentage and reduces the price by that percentage.

1. Write a Java program to create a class called Animal with a method called
makeSound(). Create a subclass called Cat that overrides the makeSound() method to
bark.

2. Write a Java program to create a class called Vehicle with a method called drive().
Create a subclass called Car that overrides the drive() method to print "Repairing a
car".

3. Write a Java program to create a class called Shape with a method called getArea().
Create a subclass called Rectangle that overrides the getArea() method to calculate
the area of a rectangle.

4. Write a Java program to create a class called Employee with methods called work()
and getSalary(). Create a subclass called HRManager that overrides the work()
method and adds a new method called addEmployee().

5. Write a Java program to create a class known as "BankAccount" with methods
called deposit() and withdraw(). Create a subclass called SavingsAccount that
overrides the withdraw() method to prevent withdrawals if the account balance falls
below one hundred.

6. Write a Java program to create a class called Animal with a method named move().
Create a subclass called Cheetah that overrides the move() method to run.

7. Write a Java program to create a class known as Person with methods called
getFirstName() and getLastName(). Create a subclass called Employee that adds a
new method named getEmployeeId() and overrides the getLastName() method to
include the employee's job title.

8. Write a Java program to create a class called Shape with methods called
getPerimeter() and getArea(). Create a subclass called Circle that overrides the
getPerimeter() and getArea() methods to calculate the area and perimeter of a circle.

9. Write a Java program to create a vehicle class hierarchy. The base class should be
Vehicle, with subclasses Truck, Car and Motorcycle. Each subclass should have
properties such as make, model, year, and fuel type. Implement methods for
calculating fuel efficiency, distance traveled, and maximum speed.

10. Write a Java program that creates a class hierarchy for employees of a company.
The base class should be Employee, with subclasses Manager, Developer, and
Programmer. Each subclass should have properties such as name, address, salary, and
job title. Implement methods for calculating bonuses, generating performance
reports, and managing projects.

1. Write a Java program to create a base class Animal (Animal Family) with a method
called Sound(). Create two subclasses Bird and Cat. Override the Sound() method in
each subclass to make a specific sound for each animal.

2. Write a Java program to create a class Vehicle with a method called speedUp().
Create two subclasses Car and Bicycle. Override the speedUp() method in each
subclass to increase the vehicle's speed differently.

3. Write a Java program to create a base class Shape with a method called
calculateArea(). Create three subclasses: Circle, Rectangle, and Triangle. Override the
calculateArea() method in each subclass to calculate and return the shape's area.

4. Write a Java program to create a class Employee with a method called
calculateSalary(). Create two subclasses Manager and Programmer. In each subclass,
override the calculateSalary() method to calculate and return the salary based on
their specific roles.

5. Write a Java program to create a base class Sports with a method called play().
Create three subclasses: Football, Basketball, and Rugby. Override the play() method
in each subclass to play a specific statement for each sport.

6. Write a Java program to create a class Shape with methods getArea() and
getPerimeter(). Create three subclasses: Circle, Rectangle, and Triangle. Override the
getArea() and getPerimeter() methods in each subclass to calculate and return the
area and perimeter of the respective shapes.

7. Write a Java program to create a base class Animal with methods move() and
makeSound(). Create two subclasses Bird and Panthera. Override the move() method
in each subclass to describe how each animal moves. Also, override the makeSound()
method in each subclass to make a specific sound for each animal.

8. Write a Java program to create a base class Shape with methods draw() and
calculateArea(). Create three subclasses: Circle, Square, and Triangle. Override the
draw() method in each subclass to draw the respective shape, and override the
calculateArea() method to calculate and return the area of each shape.

9. Write a Java program to create a base class BankAccount with methods deposit()
and withdraw(). Create two subclasses SavingsAccount and CheckingAccount.

Override the withdraw() method in each subclass to impose different withdrawal
limits and fees.

10. Write a Java program to create a base class Animal with methods eat() and
sound(). Create three subclasses: Lion, Tiger, and Panther. Override the eat() method
in each subclass to describe what each animal eats. In addition, override the sound()
method to make a specific sound for each animal.

11. Write a Java program to create a base class Vehicle with methods startEngine()
and stopEngine(). Create two subclasses Car and Motorcycle. Override the
startEngine() and stopEngine() methods in each subclass to start and stop the engines
differently.

12. Write a Java program to create a base class Shape with methods draw() and
calculateArea(). Create two subclasses Circle and Cylinder. Override the draw()
method in each subclass to draw the respective shape. In addition, override the
calculateArea() method in the Cylinder subclass to calculate and return the total
surface area of the cylinder.

1. Write a Java program to create an interface Shape with the getArea() method.
Create three classes Rectangle, Circle, and Triangle that implement the Shape
interface. Implement the getArea() method for each of the three classes.

2. Write a Java program to create a Animal interface with a method called bark() that
takes no arguments and returns void. Create a Dog class that implements Animal and
overrides speak() to print "Dog is barking".

3. Write a Java program to create an interface Flyable with a method called fly_obj().
Create three classes Spacecraft, Airplane, and Helicopter that implement the Flyable
interface. Implement the fly_obj() method for each of the three classes.

4. Write a Java programming to create a banking system with three classes - Bank,
Account, SavingsAccount, and CurrentAccount. The bank should have a list of
accounts and methods for adding them. Accounts should be an interface with
methods to deposit, withdraw, calculate interest, and view balances. SavingsAccount
and CurrentAccount should implement the Account interface and have their own
unique methods.

5. Write a Java program to create an interface Resizable with methods
resizeWidth(int width) and resizeHeight(int height) that allow an object to be resized.
Create a class Rectangle that implements the Resizable interface and implements the
resize methods.

6. Write a Java program to create an interface Drawable with a method draw() that
takes no arguments and returns void. Create three classes Circle, Rectangle, and
Triangle that implement the Drawable interface and override the draw() method to
draw their respective shapes.

7. Write a Java program to create an interface Sortable with a method sort() that
sorts an array of integers in ascending order. Create two classes BubbleSort and
SelectionSort that implement the Sortable interface and provide their own
implementations of the sort() method.

8. Write a Java program to create an interface Playable with a method play() that
takes no arguments and returns void. Create three classes Football, Volleyball, and
Basketball that implement the Playable interface and override the play() method to
play the respective sports.

9. Write a Java program to create an interface Searchable with a method
search(String keyword) that searches for a given keyword in a text document. Create
two classes Document and WebPage that implement the Searchable interface and
provide their own implementations of the search() method.

10. Write a Java program to create an interface Encryptable with methods encrypt
(String data) and decrypt (String encryptedData) that define encryption and
decryption operations. Create two classes AES and RSA that implement the
Encryptable interface and provide their own encryption and decryption algorithms.

11. Write a Java program to create an interface Sortable with a method sort (int[]
array) that sorts an array of integers in descending order. Create two classes
QuickSort and MergeSort that implement the Sortable interface and provide their
own implementations of the sort() method.

1. Write a Java program to create an abstract class Animal with an abstract method
called sound(). Create subclasses Lion and Tiger that extend the Animal class and
implement the sound() method to make a specific sound for each animal.

2. Write a Java program to create an abstract class Shape with abstract methods
calculateArea() and calculatePerimeter(). Create subclasses Circle and Triangle that
extend the Shape class and implement the respective methods to calculate the area
and perimeter of each shape.

3. Write a Java program to create an abstract class BankAccount with abstract
methods deposit() and withdraw(). Create subclasses: SavingsAccount and
CurrentAccount that extend the BankAccount class and implement the respective
methods to handle deposits and withdrawals for each account type.

4. Write a Java program to create an abstract class Animal with abstract methods
eat() and sleep(). Create subclasses Lion, Tiger, and Deer that extend the Animal class
and implement the eat() and sleep() methods differently based on their specific
behavior.

5. Write a Java program to create an abstract class Employee with abstract methods
calculateSalary() and displayInfo(). Create subclasses Manager and Programmer that
extend the Employee class and implement the respective methods to calculate salary
and display information for each role.

6. Write a Java program to create an abstract class Shape3D with abstract methods
calculateVolume() and calculateSurfaceArea(). Create subclasses Sphere and Cube
that extend the Shape3D class and implement the respective methods to calculate
the volume and surface area of each shape.

7. Write a Java program to create an abstract class Vehicle with abstract methods
startEngine() and stopEngine(). Create subclasses Car and Motorcycle that extend the
Vehicle class and implement the respective methods to start and stop the engines for
each vehicle type.

8. Write a Java program to create an abstract class Person with abstract methods
eat() and exercise(). Create subclasses Athlete and LazyPerson that extend the Person
class and implement the respective methods to describe how each person eats and
exercises.

9. Write a Java program to create an abstract class Instrument with abstract methods
play() and tune(). Create subclasses for Glockenspiel and Violin that extend the
Instrument class and implement the respective methods to play and tune each
instrument.

10. Write a Java program to create an abstract class Shape2D with abstract methods
draw() and resize(). Create subclasses Rectangle and Circle that extend the Shape2D
class and implement the respective methods to draw and resize each shape.

11. Write a Java program to create an abstract class Bird with abstract methods fly()
and makeSound(). Create subclasses Eagle and Hawk that extend the Bird class and
implement the respective methods to describe how each bird flies and makes a
sound.

12. Write a Java program to create an abstract class GeometricShape with abstract
methods area() and perimeter(). Create subclasses Triangle and Square that extend
the GeometricShape class and implement the respective methods to calculate the
area and perimeter of each shape.

